Java – Data Structures

The data structures provided by the Java utility package are very powerful and perform a wide range of functions. These data structures consist of the following interface and classes:

  • Enumeration
  • BitSet
  • Vector
  • Stack
  • Dictionary
  • Hashtable
  • Properties

All these classes are now legacy and Java-2 has introduced a new framework called Collections Framework, which is discussed in next tutorial:

The Enumeration:

The Enumeration interface isn’t itself a data structure, but it is very important within the context of other data structures. The Enumeration interface defines a means to retrieve successive elements from a data structure.

For example, Enumeration defines a method called nextElement that is used to get the next element in a data structure that contains multiple elements.

The BitSet

The BitSet class implements a group of bits or flags that can be set and cleared individually.

This class is very useful in cases where you need to keep up with a set of Boolean values; you just assign a bit to each value and set or clear it as appropriate.

The Vector

The Vector class is similar to a traditional Java array, except that it can grow as necessary to accommodate new elements.

Like an array, elements of a Vector object can be accessed via an index into the vector.

The nice thing about using the Vector class is that you don’t have to worry about setting it to a specific size upon creation; it shrinks and grows automatically when necessary.

The Stack

The Stack class implements a last-in-first-out (LIFO) stack of elements.

You can think of a stack literally as a vertical stack of objects; when you add a new element, it gets stacked on top of the others.

When you pull an element off the stack, it comes off the top. In other words, the last element you added to the stack is the first one to come back off.

The Dictionary

The Dictionary class is an abstract class that defines a data structure for mapping keys to values.

This is useful in cases where you want to be able to access data via a particular key rather than an integer index.

Since the Dictionary class is abstract, it provides only the framework for a key-mapped data structure rather than a specific implementation.

The Hashtable

The Hashtable class provides a means of organizing data based on some user-defined key structure.

For example, in an address list hash table you could store and sort data based on a key such as ZIP code rather than on a person’s name.

The specific meaning of keys in regard to hash tables is totally dependent on the usage of the hash table and the data it contains.

The Properties

Properties is a subclass of Hashtable. It is used to maintain lists of values in which the key is a String and the value is also a String.

The Properties class is used by many other Java classes. For example, it is the type of object returned by System.getProperties( ) when obtaining environmental values.

Java Collections Framework

Prior to Java 2, Java provided ad hoc classes such as Dictionary, Vector, Stack, and Properties to store and manipulate groups of objects. Although these classes were quite useful, they lacked a central, unifying theme. Thus, the way that you used Vector was different from the way that you used Properties.

The collections framework was designed to meet several goals.

  • The framework had to be high-performance. The implementations for the fundamental collections (dynamic arrays, linked lists, trees, and hashtables) are highly efficient.
  • The framework had to allow different types of collections to work in a similar manner and with a high degree of interoperability.
  • Extending and/or adapting a collection had to be easy.

Towards this end, the entire collections framework is designed around a set of standard interfaces. Several standard implementations such as LinkedList, HashSet, and TreeSet, of these interfaces are provided that you may use as-is and you may also implement your own collection, if you choose.

A collections framework is a unified architecture for representing and manipulating collections. All collections frameworks contain the following:

  • Interfaces: These are abstract data types that represent collections. Interfaces allow collections to be manipulated independently of the details of their representation. In object-oriented languages, interfaces generally form a hierarchy.
  • Implementations, i.e., Classes: These are the concrete implementations of the collection interfaces. In essence, they are reusable data structures.
  • Algorithms: These are the methods that perform useful computations, such as searching and sorting, on objects that implement collection interfaces. The algorithms are said to be polymorphic: that is, the same method can be used on many different implementations of the appropriate collection interface.

In addition to collections, the framework defines several map interfaces and classes. Maps store key/value pairs. Although maps are not collections in the proper use of the term, but they are fully integrated with collections.

The Collection Interfaces:

The collections framework defines several interfaces. This section provides an overview of each interface:

SN Interfaces with Description
1 The Collection Interface

This enables you to work with groups of objects; it is at the top of the collections hierarchy.

2 The List Interface

This extends Collection and an instance of List stores an ordered collection of elements.

3 The Set

This extends Collection to handle sets, which must contain unique elements

4 The SortedSet

This extends Set to handle sorted sets

5 The Map

This maps unique keys to values.

6 The Map.Entry

This describes an element (a key/value pair) in a map. This is an inner class of Map.

7 The SortedMap

This extends Map so that the keys are maintained in ascending order.

8 The Enumeration

This is legacy interface and defines the methods by which you can enumerate (obtain one at a time) the elements in a collection of objects. This legacy interface has been superceded by Iterator.

The Collection Classes:

Java provides a set of standard collection classes that implement Collection interfaces. Some of the classes provide full implementations that can be used as-is and others are abstract class, providing skeletal implementations that are used as starting points for creating concrete collections.

The standard collection classes are summarized in the following table:

SN Classes with Description
1 AbstractCollectionImplements most of the Collection interface.
2 AbstractListExtends AbstractCollection and implements most of the List interface.
3 AbstractSequentialListExtends AbstractList for use by a collection that uses sequential rather than random access of its elements.
4 LinkedList

Implements a linked list by extending AbstractSequentialList.

5 ArrayList

Implements a dynamic array by extending AbstractList.

6 AbstractSetExtends AbstractCollection and implements most of the Set interface.
7 HashSet

Extends AbstractSet for use with a hash table.

8 LinkedHashSet

Extends HashSet to allow insertion-order iterations.

9 TreeSet

Implements a set stored in a tree. Extends AbstractSet.

10 AbstractMapImplements most of the Map interface.
11 HashMap

Extends AbstractMap to use a hash table.

12 TreeMap

Extends AbstractMap to use a tree.

13 WeakHashMap

Extends AbstractMap to use a hash table with weak keys.

14 LinkedHashMap

Extends HashMap to allow insertion-order iterations.

15 IdentityHashMap

Extends AbstractMap and uses reference equality when comparing documents.

The AbstractCollection, AbstractSet, AbstractList, AbstractSequentialList andAbstractMap classes provide skeletal implementations of the core collection interfaces, to minimize the effort required to implement them.

The following legacy classes defined by java.util have been discussed in previous tutorial:

SN Classes with Description
1 Vector

This implements a dynamic array. It is similar to ArrayList, but with some differences.

2 Stack

Stack is a subclass of Vector that implements a standard last-in, first-out stack.

3 Dictionary

Dictionary is an abstract class that represents a key/value storage repository and operates much like Map.

4 Hashtable

Hashtable was part of the original java.util and is a concrete implementation of a Dictionary.

5 Properties

Properties is a subclass of Hashtable. It is used to maintain lists of values in which the key is a String and the value is also a String.

6 BitSet

A BitSet class creates a special type of array that holds bit values. This array can increase in size as needed.

The Collection Algorithms:

The collections framework defines several algorithms that can be applied to collections and maps. These algorithms are defined as static methods within the Collections class.

Several of the methods can throw a ClassCastException, which occurs when an attempt is made to compare incompatible types, or anUnsupportedOperationException, which occurs when an attempt is made to modify an unmodifiable collection.

Collections define three static variables: EMPTY_SET, EMPTY_LIST, and EMPTY_MAP. All are immutable.

SN Algorithms with Description
1 The Collection Algorithms

Here is a list of all the algorithm implementation.

How to use an Iterator ?

Often, you will want to cycle through the elements in a collection. For example, you might want to display each element.

The easiest way to do this is to employ an iterator, which is an object that implements either the Iterator or the ListIterator interface.

Iterator enables you to cycle through a collection, obtaining or removing elements. ListIterator extends Iterator to allow bidirectional traversal of a list and the modification of elements.

SN Iterator Methods with Description
1 Using Java Iterator

Here is a list of all the methods with examples provided by Iterator and ListIterator interfaces.

How to use a Comparator ?

Both TreeSet and TreeMap store elements in sorted order. However, it is the comparator that defines precisely what sorted order means.

This interface lets us sort a given collection any number of different ways. Also this interface can be used to sort any instances of any class (even classes we cannot modify).

SN Iterator Methods with Description
1 Using Java Comparator

Here is a list of all the methods with examples provided by Comparator Interface.

Summary:

The Java collections framework gives the programmer access to prepackaged data structures as well as to algorithms for manipulating them.

A collection is an object that can hold references to other objects. The collection interfaces declare the operations that can be performed on each type of collection.

The classes and interfaces of the collections framework are in package java.util.

Java – Generics

It would be nice if we could write a single sort method that could sort the elements in an Integer array, a String array or an array of any type that supports ordering.

Java Generic methods and generic classes enable programmers to specify, with a single method declaration, a set of related methods or, with a single class declaration, a set of related types, respectively.

Generics also provide compile-time type safety that allows programmers to catch invalid types at compile time.

Using Java Generic concept, we might write a generic method for sorting an array of objects, then invoke the generic method with Integer arrays, Double arrays, String arrays and so on, to sort the array elements.

Generic Methods:

You can write a single generic method declaration that can be called with arguments of different types. Based on the types of the arguments passed to the generic method, the compiler handles each method call appropriately. Following are the rules to define Generic Methods:

  • All generic method declarations have a type parameter section delimited by angle brackets (< and >) that precedes the method’s return type ( < E > in the next example).
  • Each type parameter section contains one or more type parameters separated by commas. A type parameter, also known as a type variable, is an identifier that specifies a generic type name.
  • The type parameters can be used to declare the return type and act as placeholders for the types of the arguments passed to the generic method, which are known as actual type arguments.
  • A generic method’s body is declared like that of any other method. Note that type parameters can represent only reference types, not primitive types (like int, double and char).

Example:

Following example illustrates how we can print array of different type using a single Generic method:

public class GenericMethodTest
{
   // generic method printArray                         
   public static < E > void printArray( E[] inputArray )
   {
      // Display array elements              
         for ( E element : inputArray ){        
            System.out.printf( "%s ", element );
         }
         System.out.println();
    }

    public static void main( String args[] )
    {
        // Create arrays of Integer, Double and Character
        Integer[] intArray = { 1, 2, 3, 4, 5 };
        Double[] doubleArray = { 1.1, 2.2, 3.3, 4.4 };
        Character[] charArray = { 'H', 'E', 'L', 'L', 'O' };

        System.out.println( "Array integerArray contains:" );
        printArray( intArray  ); // pass an Integer array

        System.out.println( "\nArray doubleArray contains:" );
        printArray( doubleArray ); // pass a Double array

        System.out.println( "\nArray characterArray contains:" );
        printArray( charArray ); // pass a Character array
    } 
}

This would produce the following result:

Array integerArray contains:
1 2 3 4 5 6

Array doubleArray contains:
1.1 2.2 3.3 4.4 

Array characterArray contains:
H E L L O

Bounded Type Parameters:

There may be times when you’ll want to restrict the kinds of types that are allowed to be passed to a type parameter. For example, a method that operates on numbers might only want to accept instances of Number or its subclasses. This is what bounded type parameters are for.

To declare a bounded type parameter, list the type parameter’s name, followed by the extends keyword, followed by its upper bound.

Example:

Following example illustrates how extends is used in a general sense to mean either “extends” (as in classes) or “implements” (as in interfaces). This example is Generic method to return the largest of three Comparable objects:

public class MaximumTest
{
   // determines the largest of three Comparable objects
   public static <T extends Comparable<T>> T maximum(T x, T y, T z)
   {                      
      T max = x; // assume x is initially the largest       
      if ( y.compareTo( max ) > 0 ){
         max = y; // y is the largest so far
      }
      if ( z.compareTo( max ) > 0 ){
         max = z; // z is the largest now                 
      }
      return max; // returns the largest object   
   }
   public static void main( String args[] )
   {
      System.out.printf( "Max of %d, %d and %d is %d\n\n", 
                   3, 4, 5, maximum( 3, 4, 5 ) );

      System.out.printf( "Maxm of %.1f,%.1f and %.1f is %.1f\n\n",
                   6.6, 8.8, 7.7, maximum( 6.6, 8.8, 7.7 ) );

      System.out.printf( "Max of %s, %s and %s is %s\n","pear",
         "apple", "orange", maximum( "pear", "apple", "orange" ) );
   }
}

This would produce the following result:

aximum of 3, 4 and 5 is 5

aximum of 6.6, 8.8 and 7.7 is 8.8

aximum of pear, apple and orange is pear

Generic Classes:

A generic class declaration looks like a non-generic class declaration, except that the class name is followed by a type parameter section.

As with generic methods, the type parameter section of a generic class can have one or more type parameters separated by commas. These classes are known as parameterized classes or parameterized types because they accept one or more parameters.

Example:

Following example illustrates how we can define a generic class:

public class Box<T> {

  private T t;

  public void add(T t) {
    this.t = t;
  }

  public T get() {
    return t;
  }

  public static void main(String[] args) {
     Box<Integer> integerBox = new Box<Integer>();
     Box<String> stringBox = new Box<String>();
    
     integerBox.add(new Integer(10));
     stringBox.add(new String("Hello World"));

     System.out.printf("Integer Value :%d\n\n", integerBox.get());
     System.out.printf("String Value :%s\n", stringBox.get());
  }
}

This would produce the following result:

Integer Value :10
String Value :Hello World

 

Java – Serialization

Java provides a mechanism, called object serialization where an object can be represented as a sequence of bytes that includes the object’s data as well as information about the object’s type and the types of data stored in the object.

After a serialized object has been written into a file, it can be read from the file and deserialized that is, the type information and bytes that represent the object and its data can be used to recreate the object in memory.

Most impressive is that the entire process is JVM independent, meaning an object can be serialized on one platform and deserialized on an entirely different platform.

Classes ObjectInputStream and ObjectOutputStream are high-level streams that contain the methods for serializing and deserializing an object.

The ObjectOutputStream class contains many write methods for writing various data types, but one method in particular stands out:

public final void writeObject(Object x) throws IOException

The above method serializes an Object and sends it to the output stream. Similarly, the ObjectInputStream class contains the following method for deserializing an object:

public final Object readObject() throws IOException, ClassNotFoundException

This method retrieves the next Object out of the stream and deserializes it. The return value is Object, so you will need to cast it to its appropriate data type.

To demonstrate how serialization works in Java, I am going to use the Employee class that we discussed early on in the book. Suppose that we have the following Employee class, which implements the Serializable interface:

public class Employee implements java.io.Serializable
{
   public String name;
   public String address;
   public transient int SSN;
   public int number;
   
   public void mailCheck()
   {
      System.out.println("Mailing a check to " + name + " " + address);
   }
}

Notice that for a class to be serialized successfully, two conditions must be met:

  • The class must implement the java.io.Serializable interface.
  • All of the fields in the class must be serializable. If a field is not serializable, it must be marked transient.

If you are curious to know if a Java Standard Class is serializable or not, check the documentation for the class. The test is simple: If the class implements java.io.Serializable, then it is serializable; otherwise, it’s not.

Serializing an Object:

The ObjectOutputStream class is used to serialize an Object. The following SerializeDemo program instantiates an Employee object and serializes it to a file.

When the program is done executing, a file named employee.ser is created. The program does not generate any output, but study the code and try to determine what the program is doing.

Note: When serializing an object to a file, the standard convention in Java is to give the file a .ser extension.

import java.io.*;

public class SerializeDemo
{
   public static void main(String [] args)
   {
      Employee e = new Employee();
      e.name = "Reyan Ali";
      e.address = "Phokka Kuan, Ambehta Peer";
      e.SSN = 11122333;
      e.number = 101;
      
      try
      {
         FileOutputStream fileOut =
         new FileOutputStream("/tmp/employee.ser");
         ObjectOutputStream out = new ObjectOutputStream(fileOut);
         out.writeObject(e);
         out.close();
         fileOut.close();
         System.out.printf("Serialized data is saved in /tmp/employee.ser");
      }catch(IOException i)
      {
          i.printStackTrace();
      }
   }
}

Deserializing an Object:

The following DeserializeDemo program deserializes the Employee object created in the SerializeDemo program. Study the program and try to determine its output:

import java.io.*;
public class DeserializeDemo
{
   public static void main(String [] args)
   {
      Employee e = null;
      try
      {
         FileInputStream fileIn = new FileInputStream("/tmp/employee.ser");
         ObjectInputStream in = new ObjectInputStream(fileIn);
         e = (Employee) in.readObject();
         in.close();
         fileIn.close();
      }catch(IOException i)
      {
         i.printStackTrace();
         return;
      }catch(ClassNotFoundException c)
      {
         System.out.println("Employee class not found");
         c.printStackTrace();
         return;
      }
      System.out.println("Deserialized Employee...");
      System.out.println("Name: " + e.name);
      System.out.println("Address: " + e.address);
      System.out.println("SSN: " + e.SSN);
      System.out.println("Number: " + e.number);
    }
}

This would produce the following result:

Deserialized Employee...
Name: Reyan Ali
Address:Phokka Kuan, Ambehta Peer
SSN: 0
Number:101

Here are following important points to be noted:

  • The try/catch block tries to catch a ClassNotFoundException, which is declared by the readObject() method. For a JVM to be able to deserialize an object, it must be able to find the bytecode for the class. If the JVM can’t find a class during the deserialization of an object, it throws a ClassNotFoundException.
  • Notice that the return value of readObject() is cast to an Employee reference.
  • The value of the SSN field was 11122333 when the object was serialized, but because the field is transient, this value was not sent to the output stream. The SSN field of the deserialized Employee object is 0.

Java – Networking

The term network programming refers to writing programs that execute across multiple devices (computers), in which the devices are all connected to each other using a network.

The java.net package of the J2SE APIs contains a collection of classes and interfaces that provide the low-level communication details, allowing you to write programs that focus on solving the problem at hand.

The java.net package provides support for the two common network protocols:

  • TCP: TCP stands for Transmission Control Protocol, which allows for reliable communication between two applications. TCP is typically used over the Internet Protocol, which is referred to as TCP/IP.
  • UDP: UDP stands for User Datagram Protocol, a connection-less protocol that allows for packets of data to be transmitted between applications.

This tutorial gives good understanding on the following two subjects:

  • Socket Programming: This is most widely used concept in Networking and it has been explained in very detail.
  • URL Processing: This would be covered separately.

Socket Programming:

Sockets provide the communication mechanism between two computers using TCP. A client program creates a socket on its end of the communication and attempts to connect that socket to a server.

When the connection is made, the server creates a socket object on its end of the communication. The client and server can now communicate by writing to and reading from the socket.

The java.net.Socket class represents a socket, and the java.net.ServerSocket class provides a mechanism for the server program to listen for clients and establish connections with them.

The following steps occur when establishing a TCP connection between two computers using sockets:

  • The server instantiates a ServerSocket object, denoting which port number communication is to occur on.
  • The server invokes the accept() method of the ServerSocket class. This method waits until a client connects to the server on the given port.
  • After the server is waiting, a client instantiates a Socket object, specifying the server name and port number to connect to.
  • The constructor of the Socket class attempts to connect the client to the specified server and port number. If communication is established, the client now has a Socket object capable of communicating with the server.
  • On the server side, the accept() method returns a reference to a new socket on the server that is connected to the client’s socket.

After the connections are established, communication can occur using I/O streams. Each socket has both an OutputStream and an InputStream. The client’s OutputStream is connected to the server’s InputStream, and the client’s InputStream is connected to the server’s OutputStream.

TCP is a twoway communication protocol, so data can be sent across both streams at the same time. There are following usefull classes providing complete set of methods to implement sockets.

ServerSocket Class Methods:

The java.net.ServerSocket class is used by server applications to obtain a port and listen for client requests

The ServerSocket class has four constructors:

SN Methods with Description
1 public ServerSocket(int port) throws IOExceptionAttempts to create a server socket bound to the specified port. An exception occurs if the port is already bound by another application.
2 public ServerSocket(int port, int backlog) throws IOExceptionSimilar to the previous constructor, the backlog parameter specifies how many incoming clients to store in a wait queue.
3 public ServerSocket(int port, int backlog, InetAddress address) throws IOExceptionSimilar to the previous constructor, the InetAddress parameter specifies the local IP address to bind to. The InetAddress is used for servers that may have multiple IP addresses, allowing the server to specify which of its IP addresses to accept client requests on
4 public ServerSocket() throws IOExceptionCreates an unbound server socket. When using this constructor, use the bind() method when you are ready to bind the server socket

If the ServerSocket constructor does not throw an exception, it means that your application has successfully bound to the specified port and is ready for client requests.

Here are some of the common methods of the ServerSocket class:

SN Methods with Description
1 public int getLocalPort()Returns the port that the server socket is listening on. This method is useful if you passed in 0 as the port number in a constructor and let the server find a port for you.
2 public Socket accept() throws IOExceptionWaits for an incoming client. This method blocks until either a client connects to the server on the specified port or the socket times out, assuming that the time-out value has been set using the setSoTimeout() method. Otherwise, this method blocks indefinitely
3 public void setSoTimeout(int timeout)Sets the time-out value for how long the server socket waits for a client during the accept().
4 public void bind(SocketAddress host, int backlog)Binds the socket to the specified server and port in the SocketAddress object. Use this method if you instantiated the ServerSocket using the no-argument constructor.

When the ServerSocket invokes accept(), the method does not return until a client connects. After a client does connect, the ServerSocket creates a new Socket on an unspecified port and returns a reference to this new Socket. A TCP connection now exists between the client and server, and communication can begin.

Socket Class Methods:

The java.net.Socket class represents the socket that both the client and server use to communicate with each other. The client obtains a Socket object by instantiating one, whereas the server obtains a Socket object from the return value of the accept() method.

The Socket class has five constructors that a client uses to connect to a server:

SN Methods with Description
1 public Socket(String host, int port) throws UnknownHostException, IOException.This method attempts to connect to the specified server at the specified port. If this constructor does not throw an exception, the connection is successful and the client is connected to the server.
2 public Socket(InetAddress host, int port) throws IOExceptionThis method is identical to the previous constructor, except that the host is denoted by an InetAddress object.
3 public Socket(String host, int port, InetAddress localAddress, int localPort) throws IOException.Connects to the specified host and port, creating a socket on the local host at the specified address and port.
4 public Socket(InetAddress host, int port, InetAddress localAddress, int localPort) throws IOException.This method is identical to the previous constructor, except that the host is denoted by an InetAddress object instead of a String
5 public Socket()Creates an unconnected socket. Use the connect() method to connect this socket to a server.

When the Socket constructor returns, it does not simply instantiate a Socket object but it actually attempts to connect to the specified server and port.

Some methods of interest in the Socket class are listed here. Notice that both the client and server have a Socket object, so these methods can be invoked by both the client and server.

SN Methods with Description
1 public void connect(SocketAddress host, int timeout) throws IOExceptionThis method connects the socket to the specified host. This method is needed only when you instantiated the Socket using the no-argument constructor.
2 public InetAddress getInetAddress()This method returns the address of the other computer that this socket is connected to.
3 public int getPort()Returns the port the socket is bound to on the remote machine.
4 public int getLocalPort()Returns the port the socket is bound to on the local machine.
5 public SocketAddress getRemoteSocketAddress()Returns the address of the remote socket.
6 public InputStream getInputStream() throws IOExceptionReturns the input stream of the socket. The input stream is connected to the output stream of the remote socket.
7 public OutputStream getOutputStream() throws IOExceptionReturns the output stream of the socket. The output stream is connected to the input stream of the remote socket
8 public void close() throws IOExceptionCloses the socket, which makes this Socket object no longer capable of connecting again to any server

InetAddress Class Methods:

This class represents an Internet Protocol (IP) address. Here are following usefull methods which you would need while doing socket programming:

SN Methods with Description
1 static InetAddress getByAddress(byte[] addr)Returns an InetAddress object given the raw IP address .
2 static InetAddress getByAddress(String host, byte[] addr)Create an InetAddress based on the provided host name and IP address.
3 static InetAddress getByName(String host)Determines the IP address of a host, given the host’s name.
4 String getHostAddress()Returns the IP address string in textual presentation.
5 String getHostName()Gets the host name for this IP address.
6 static InetAddress InetAddress getLocalHost()Returns the local host.
7 String toString()Converts this IP address to a String.

Socket Client Example:

The following GreetingClient is a client program that connects to a server by using a socket and sends a greeting, and then waits for a response.

// File Name GreetingClient.java

import java.net.*;
import java.io.*;

public class GreetingClient
{
   public static void main(String [] args)
   {
      String serverName = args[0];
      int port = Integer.parseInt(args[1]);
      try
      {
         System.out.println("Connecting to " + serverName +
		 " on port " + port);
         Socket client = new Socket(serverName, port);
         System.out.println("Just connected to " 
		 + client.getRemoteSocketAddress());
         OutputStream outToServer = client.getOutputStream();
         DataOutputStream out = new DataOutputStream(outToServer);
         out.writeUTF("Hello from "
                      + client.getLocalSocketAddress());
         InputStream inFromServer = client.getInputStream();
         DataInputStream in =
                        new DataInputStream(inFromServer);
         System.out.println("Server says " + in.readUTF());
         client.close();
      }catch(IOException e)
      {
         e.printStackTrace();
      }
   }
}

Socket Server Example:

The following GreetingServer program is an example of a server application that uses the Socket class to listen for clients on a port number specified by a command-line argument:

// File Name GreetingServer.java

import java.net.*;
import java.io.*;

public class GreetingServer extends Thread
{
   private ServerSocket serverSocket;
   
   public GreetingServer(int port) throws IOException
   {
      serverSocket = new ServerSocket(port);
      serverSocket.setSoTimeout(10000);
   }

   public void run()
   {
      while(true)
      {
         try
         {
            System.out.println("Waiting for client on port " +
            serverSocket.getLocalPort() + "...");
            Socket server = serverSocket.accept();
            System.out.println("Just connected to "
                  + server.getRemoteSocketAddress());
            DataInputStream in =
                  new DataInputStream(server.getInputStream());
            System.out.println(in.readUTF());
            DataOutputStream out =
                 new DataOutputStream(server.getOutputStream());
            out.writeUTF("Thank you for connecting to "
              + server.getLocalSocketAddress() + "\nGoodbye!");
            server.close();
         }catch(SocketTimeoutException s)
         {
            System.out.println("Socket timed out!");
            break;
         }catch(IOException e)
         {
            e.printStackTrace();
            break;
         }
      }
   }
   public static void main(String [] args)
   {
      int port = Integer.parseInt(args[0]);
      try
      {
         Thread t = new GreetingServer(port);
         t.start();
      }catch(IOException e)
      {
         e.printStackTrace();
      }
   }
}

Compile client and server and then start server as follows:

$ java GreetingServer 6066
Waiting for client on port 6066...

Check client program as follows:

$ java GreetingClient localhost 6066
Connecting to localhost on port 6066
Just connected to localhost/127.0.0.1:6066
Server says Thank you for connecting to /127.0.0.1:6066
Goodbye!

Java – Sending Email

To send an e-mail using your Java Application is simple enough but to start with you should have JavaMail API and Java Activation Framework (JAF)installed on your machine.

  • You can download latest version of JavaMail (Version 1.2) from Java’s standard website.
  • You can download latest version of JAF (Version 1.1.1) from Java’s standard website.

Download and unzip these files, in the newly created top level directories you will find a number of jar files for both the applications. You need to add mail.jarand activation.jar files in your CLASSPATH.

Send a Simple E-mail:

Here is an example to send a simple e-mail from your machine. Here it is assumed that your localhost is connected to the internet and capable enough to send an email.

// File Name SendEmail.java

import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.activation.*;

public class SendEmail
{
   public static void main(String [] args)
   {    
      // Recipient's email ID needs to be mentioned.
      String to = "abcd@gmail.com";

      // Sender's email ID needs to be mentioned
      String from = "web@gmail.com";

      // Assuming you are sending email from localhost
      String host = "localhost";

      // Get system properties
      Properties properties = System.getProperties();

      // Setup mail server
      properties.setProperty("mail.smtp.host", host);

      // Get the default Session object.
      Session session = Session.getDefaultInstance(properties);

      try{
         // Create a default MimeMessage object.
         MimeMessage message = new MimeMessage(session);

         // Set From: header field of the header.
         message.setFrom(new InternetAddress(from));

         // Set To: header field of the header.
         message.addRecipient(Message.RecipientType.TO, new InternetAddress(to));

         // Set Subject: header field
         message.setSubject("This is the Subject Line!");

         // Now set the actual message
         message.setText("This is actual message");

         // Send message
         Transport.send(message);
         System.out.println("Sent message successfully....");
      }catch (MessagingException mex) {
         mex.printStackTrace();
      }
   }
}

Compile and run this program to send a simple e-mail:

$ java SendEmail
Sent message successfully....

If you want to send an e-mail to multiple recipients then following methods would be used to specify multiple e-mail IDs:

void addRecipients(Message.RecipientType type, Address[] addresses)throws MessagingException

Here is the description of the parameters:

  • type: This would be set to TO, CC or BCC. Here CC represents Carbon Copy and BCC represents Black Carbon Copy. ExampleMessage.RecipientType.TO
  • addresses: This is the array of email ID. You would need to use InternetAddress() method while specifying email IDs

Send an HTML E-mail:

Here is an example to send an HTML email from your machine. Here it is assumed that your localhost is connected to the internet and capable enough to send an email.

This example is very similar to previous one, except here we are using setContent() method to set content whose second argument is “text/html” to specify that the HTML content is included in the message.

Using this example, you can send as big as HTML content you like.

// File Name SendHTMLEmail.java

import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.activation.*;

public class SendHTMLEmail
{
   public static void main(String [] args)
   {
      
      // Recipient's email ID needs to be mentioned.
      String to = "abcd@gmail.com";

      // Sender's email ID needs to be mentioned
      String from = "web@gmail.com";

      // Assuming you are sending email from localhost
      String host = "localhost";

      // Get system properties
      Properties properties = System.getProperties();

      // Setup mail server
      properties.setProperty("mail.smtp.host", host);

      // Get the default Session object.
      Session session = Session.getDefaultInstance(properties);

      try{
         // Create a default MimeMessage object.
         MimeMessage message = new MimeMessage(session);

         // Set From: header field of the header.
         message.setFrom(new InternetAddress(from));

         // Set To: header field of the header.
         message.addRecipient(Message.RecipientType.TO, new InternetAddress(to));

         // Set Subject: header field
         message.setSubject("This is the Subject Line!");

         // Send the actual HTML message, as big as you like
         message.setContent("<h1>This is actual message</h1>", "text/html" );

         // Send message
         Transport.send(message);
         System.out.println("Sent message successfully....");
      }catch (MessagingException mex) {
         mex.printStackTrace();
      }
   }
}

Compile and run this program to send an HTML e-mail:

$ java SendHTMLEmail
Sent message successfully....

Send Attachment in E-mail:

Here is an example to send an email with attachment from your machine. Here it is assumed that your localhost is connected to the internet and capable enough to send an email.

// File Name SendFileEmail.java

import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.activation.*;

public class SendFileEmail
{
   public static void main(String [] args)
   {
      
      // Recipient's email ID needs to be mentioned.
      String to = "abcd@gmail.com";

      // Sender's email ID needs to be mentioned
      String from = "web@gmail.com";

      // Assuming you are sending email from localhost
      String host = "localhost";

      // Get system properties
      Properties properties = System.getProperties();

      // Setup mail server
      properties.setProperty("mail.smtp.host", host);

      // Get the default Session object.
      Session session = Session.getDefaultInstance(properties);

      try{
         // Create a default MimeMessage object.
         MimeMessage message = new MimeMessage(session);

         // Set From: header field of the header.
         message.setFrom(new InternetAddress(from));

         // Set To: header field of the header.
         message.addRecipient(Message.RecipientType.TO,
                                  new InternetAddress(to));

         // Set Subject: header field
         message.setSubject("This is the Subject Line!");

         // Create the message part 
         BodyPart messageBodyPart = new MimeBodyPart();

         // Fill the message
         messageBodyPart.setText("This is message body");
         
         // Create a multipar message
         Multipart multipart = new MimeMultipart();

         // Set text message part
         multipart.addBodyPart(messageBodyPart);

         // Part two is attachment
         messageBodyPart = new MimeBodyPart();
         String filename = "file.txt";
         DataSource source = new FileDataSource(filename);
         messageBodyPart.setDataHandler(new DataHandler(source));
         messageBodyPart.setFileName(filename);
         multipart.addBodyPart(messageBodyPart);

         // Send the complete message parts
         message.setContent(multipart );

         // Send message
         Transport.send(message);
         System.out.println("Sent message successfully....");
      }catch (MessagingException mex) {
         mex.printStackTrace();
      }
   }
}

Compile and run this program to send an HTML e-mail:

$ java SendFileEmail
Sent message successfully....

User Authentication Part:

If it is required to provide user ID and Password to the e-mail server for authentication purpose then you can set these properties as follows:

 props.setProperty("mail.user", "myuser");
 props.setProperty("mail.password", "mypwd");

Rest of the e-mail sending mechanism would remain as explained above.

Java – Multithreading

Java is amulti threaded programming language which means we can develop multi threaded program using Java. A multi threaded program contains two or more parts that can run concurrently and each part can handle different task at the same time making optimal use of the available resources specially when your computer has multiple CPUs.

By definition multitasking is when multiple processes share common processing resources such as a CPU. Multi threading extends the idea of multitasking into applications where you can subdivide specific operations within a single application into individual threads. Each of the threads can run in parallel. The OS divides processing time not only among different applications, but also among each thread within an application.

Multi threading enables you to write in a way where multiple activities can proceed concurrently in the same program.

Life Cycle of a Thread:

A thread goes through various stages in its life cycle. For example, a thread is born, started, runs, and then dies. Following diagram shows complete life cycle of a thread.

Java ThreadAbove-mentioned stages are explained here:

  • New: A new thread begins its life cycle in the new state. It remains in this state until the program starts the thread. It is also referred to as a born thread.
  • Runnable: After a newly born thread is started, the thread becomes runnable. A thread in this state is considered to be executing its task.
  • Waiting: Sometimes, a thread transitions to the waiting state while the thread waits for another thread to perform a task.A thread transitions back to the runnable state only when another thread signals the waiting thread to continue executing.
  • Timed waiting: A runnable thread can enter the timed waiting state for a specified interval of time. A thread in this state transitions back to the runnable state when that time interval expires or when the event it is waiting for occurs.
  • Terminated ( Dead ): A runnable thread enters the terminated state when it completes its task or otherwise terminates.

Thread Priorities:

Every Java thread has a priority that helps the operating system determine the order in which threads are scheduled.

Java thread priorities are in the range between MIN_PRIORITY (a constant of 1) and MAX_PRIORITY (a constant of 10). By default, every thread is given priority NORM_PRIORITY (a constant of 5).

Threads with higher priority are more important to a program and should be allocated processor time before lower-priority threads. However, thread priorities cannot guarantee the order in which threads execute and very much platform dependent.

Create Thread by Implementing Runnable Interface:

If your class is intended to be executed as a thread then you can achieve this by implementing Runnable interface. You will need to follow three basic steps:

Step 1:

As a first step you need to implement a run() method provided by Runnableinterface. This method provides entry point for the thread and you will put you complete business logic inside this method. Following is simple syntax of run() method:

public void run( )

Step 2:

At second step you will instantiate a Thread object using the following constructor:

Thread(Runnable threadObj, String threadName);

Where, threadObj is an instance of a class that implements the Runnableinterface and threadName is the name given to the new thread.

Step 3

Once Thread object is created, you can start it by calling start( ) method, which executes a call to run( ) method. Following is simple syntax of start() method:

void start( );

Example:

Here is an example that creates a new thread and starts it running:

class RunnableDemo implements Runnable {
   private Thread t;
   private String threadName;
   
   RunnableDemo( String name){
       threadName = name;
       System.out.println("Creating " +  threadName );
   }
   public void run() {
      System.out.println("Running " +  threadName );
      try {
         for(int i = 4; i > 0; i--) {
            System.out.println("Thread: " + threadName + ", " + i);
            // Let the thread sleep for a while.
            Thread.sleep(50);
         }
     } catch (InterruptedException e) {
         System.out.println("Thread " +  threadName + " interrupted.");
     }
     System.out.println("Thread " +  threadName + " exiting.");
   }
   
   public void start ()
   {
      System.out.println("Starting " +  threadName );
      if (t == null)
      {
         t = new Thread (this, threadName);
         t.start ();
      }
   }

}

public class TestThread {
   public static void main(String args[]) {
   
      RunnableDemo R1 = new RunnableDemo( "Thread-1");
      R1.start();
      
      RunnableDemo R2 = new RunnableDemo( "Thread-2");
      R2.start();
   }   
}

This would produce the following result:

Creating Thread-1
Starting Thread-1
Creating Thread-2
Starting Thread-2
Running Thread-1
Thread: Thread-1, 4
Running Thread-2
Thread: Thread-2, 4
Thread: Thread-1, 3
Thread: Thread-2, 3
Thread: Thread-1, 2
Thread: Thread-2, 2
Thread: Thread-1, 1
Thread: Thread-2, 1
Thread Thread-1 exiting.
Thread Thread-2 exiting.

Create Thread by Extending Thread Class:

The second way to create a thread is to create a new class that extendsThread class using the following two simple steps. This approach provides more flexibility in handling multiple threads created using available methods in Thread class.

Step 1

You will need to override run( ) method available in Thread class. This method provides entry point for the thread and you will put you complete business logic inside this method. Following is simple syntax of run() method:

public void run( )

Step 2

Once Thread object is created, you can start it by calling start( ) method, which executes a call to run( ) method. Following is simple syntax of start() method:

void start( );

Example:

Here is the preceding program rewritten to extend Thread:

class ThreadDemo extends Thread {
   private Thread t;
   private String threadName;
   
   ThreadDemo( String name){
       threadName = name;
       System.out.println("Creating " +  threadName );
   }
   public void run() {
      System.out.println("Running " +  threadName );
      try {
         for(int i = 4; i > 0; i--) {
            System.out.println("Thread: " + threadName + ", " + i);
            // Let the thread sleep for a while.
            Thread.sleep(50);
         }
     } catch (InterruptedException e) {
         System.out.println("Thread " +  threadName + " interrupted.");
     }
     System.out.println("Thread " +  threadName + " exiting.");
   }
   
   public void start ()
   {
      System.out.println("Starting " +  threadName );
      if (t == null)
      {
         t = new Thread (this, threadName);
         t.start ();
      }
   }

}

public class TestThread {
   public static void main(String args[]) {
   
      ThreadDemo T1 = new ThreadDemo( "Thread-1");
      T1.start();
      
      ThreadDemo T2 = new ThreadDemo( "Thread-2");
      T2.start();
   }   
}

This would produce the following result:

Creating Thread-1
Starting Thread-1
Creating Thread-2
Starting Thread-2
Running Thread-1
Thread: Thread-1, 4
Running Thread-2
Thread: Thread-2, 4
Thread: Thread-1, 3
Thread: Thread-2, 3
Thread: Thread-1, 2
Thread: Thread-2, 2
Thread: Thread-1, 1
Thread: Thread-2, 1
Thread Thread-1 exiting.
Thread Thread-2 exiting.

Thread Methods:

Following is the list of important methods available in the Thread class.

SN Methods with Description
1 public void start()Starts the thread in a separate path of execution, then invokes the run() method on this Thread object.
2 public void run()If this Thread object was instantiated using a separate Runnable target, the run() method is invoked on that Runnable

object.

3 public final void setName(String name)Changes the name of the Thread object. There is also a getName() method for retrieving the name.
4 public final void setPriority(int priority)Sets the priority of this Thread object. The possible values are between 1 and 10.
5 public final void setDaemon(boolean on)A parameter of true denotes this Thread as a daemon thread.
6 public final void join(long millisec)The current thread invokes this method on a second thread, causing the current thread to block until the second thread terminates or the specified number of milliseconds passes.
7 public void interrupt()Interrupts this thread, causing it to continue execution if it was blocked for any reason.
8 public final boolean isAlive()Returns true if the thread is alive, which is any time after the thread has been started but before it runs to completion.

The previous methods are invoked on a particular Thread object. The following methods in the Thread class are static. Invoking one of the static methods performs the operation on the currently running thread.

SN Methods with Description
1 public static void yield()Causes the currently running thread to yield to any other threads of the same priority that are waiting to be scheduled.
2 public static void sleep(long millisec)Causes the currently running thread to block for at least the specified number of milliseconds.
3 public static boolean holdsLock(Object x)Returns true if the current thread holds the lock on the given Object.
4 public static Thread currentThread()Returns a reference to the currently running thread, which is the thread that invokes this method.
5 public static void dumpStack()Prints the stack trace for the currently running thread, which is useful when debugging a multithreaded application.

Example:

The following ThreadClassDemo program demonstrates some of these methods of the Thread class. Consider a class DisplayMessage which implementsRunnable:

// File Name : DisplayMessage.java
// Create a thread to implement Runnable
public class DisplayMessage implements Runnable
{
   private String message;
   public DisplayMessage(String message)
   {
      this.message = message;
   }
   public void run()
   {
      while(true)
      {
         System.out.println(message);
      }
   }
}

Following is another class which extends Thread class:

// File Name : GuessANumber.java
// Create a thread to extentd Thread
public class GuessANumber extends Thread
{
   private int number;
   public GuessANumber(int number)
   {
      this.number = number;
   }
   public void run()
   {
      int counter = 0;
      int guess = 0;
      do
      {
          guess = (int) (Math.random() * 100 + 1);
          System.out.println(this.getName()
                       + " guesses " + guess);
          counter++;
      }while(guess != number);
      System.out.println("** Correct! " + this.getName()
                       + " in " + counter + " guesses.**");
   }
}

Following is the main program which makes use of above defined classes:

// File Name : ThreadClassDemo.java
public class ThreadClassDemo
{
   public static void main(String [] args)
   {
      Runnable hello = new DisplayMessage("Hello");
      Thread thread1 = new Thread(hello);
      thread1.setDaemon(true);
      thread1.setName("hello");
      System.out.println("Starting hello thread...");
      thread1.start();
      
      Runnable bye = new DisplayMessage("Goodbye");
      Thread thread2 = new Thread(bye);
      thread2.setPriority(Thread.MIN_PRIORITY);
      thread2.setDaemon(true);
      System.out.println("Starting goodbye thread...");
      thread2.start();

      System.out.println("Starting thread3...");
      Thread thread3 = new GuessANumber(27);
      thread3.start();
      try
      {
         thread3.join();
      }catch(InterruptedException e)
      {
         System.out.println("Thread interrupted.");
      }
      System.out.println("Starting thread4...");
      Thread thread4 = new GuessANumber(75);
      
	  thread4.start();
      System.out.println("main() is ending...");
   }
}

This would produce the following result. You can try this example again and again and you would get different result every time.

Starting hello thread...
Starting goodbye thread...
Hello
Hello
Hello
Hello
Hello
Hello
Goodbye
Goodbye
Goodbye
Goodbye
Goodbye
.......

Major Java Multithreading Concepts:

While doing Multithreading programming in Java, you would need to have the following concepts very handy:

  • What is thread synchronization?
  • Handling threads inter communication
  • Handling thread deadlock
  • Major thread operations

Java – Applet Basics

An applet is a Java program that runs in a Web browser. An applet can be a fully functional Java application because it has the entire Java API at its disposal.

There are some important differences between an applet and a standalone Java application, including the following:

  • An applet is a Java class that extends the java.applet.Applet class.
  • A main() method is not invoked on an applet, and an applet class will not define main().
  • Applets are designed to be embedded within an HTML page.
  • When a user views an HTML page that contains an applet, the code for the applet is downloaded to the user’s machine.
  • A JVM is required to view an applet. The JVM can be either a plug-in of the Web browser or a separate runtime environment.
  • The JVM on the user’s machine creates an instance of the applet class and invokes various methods during the applet’s lifetime.
  • Applets have strict security rules that are enforced by the Web browser. The security of an applet is often referred to as sandbox security, comparing the applet to a child playing in a sandbox with various rules that must be followed.
  • Other classes that the applet needs can be downloaded in a single Java Archive (JAR) file.

Life Cycle of an Applet:

Four methods in the Applet class give you the framework on which you build any serious applet:

  • init: This method is intended for whatever initialization is needed for your applet. It is called after the param tags inside the applet tag have been processed.
  • start: This method is automatically called after the browser calls the init method. It is also called whenever the user returns to the page containing the applet after having gone off to other pages.
  • stop: This method is automatically called when the user moves off the page on which the applet sits. It can, therefore, be called repeatedly in the same applet.
  • destroy: This method is only called when the browser shuts down normally. Because applets are meant to live on an HTML page, you should not normally leave resources behind after a user leaves the page that contains the applet.
  • paint: Invoked immediately after the start() method, and also any time the applet needs to repaint itself in the browser. The paint() method is actually inherited from the java.awt.

A “Hello, World” Applet:

The following is a simple applet named HelloWorldApplet.java:

import java.applet.*;
import java.awt.*;

public class HelloWorldApplet extends Applet
{
   public void paint (Graphics g)
   {
      g.drawString ("Hello World", 25, 50);
   }
}

These import statements bring the classes into the scope of our applet class:

  • java.applet.Applet.
  • java.awt.Graphics.

Without those import statements, the Java compiler would not recognize the classes Applet and Graphics, which the applet class refers to.

The Applet CLASS:

Every applet is an extension of the java.applet.Applet class. The base Applet class provides methods that a derived Applet class may call to obtain information and services from the browser context.

These include methods that do the following:

  • Get applet parameters
  • Get the network location of the HTML file that contains the applet
  • Get the network location of the applet class directory
  • Print a status message in the browser
  • Fetch an image
  • Fetch an audio clip
  • Play an audio clip
  • Resize the applet

Additionally, the Applet class provides an interface by which the viewer or browser obtains information about the applet and controls the applet’s execution. The viewer may:

  • request information about the author, version and copyright of the applet
  • request a description of the parameters the applet recognizes
  • initialize the applet
  • destroy the applet
  • start the applet’s execution
  • stop the applet’s execution

The Applet class provides default implementations of each of these methods. Those implementations may be overridden as necessary.

The “Hello, World” applet is complete as it stands. The only method overridden is the paint method.

Invoking an Applet:

An applet may be invoked by embedding directives in an HTML file and viewing the file through an applet viewer or Java-enabled browser.

The <applet> tag is the basis for embedding an applet in an HTML file. Below is an example that invokes the “Hello, World” applet:

<html>
<title>The Hello, World Applet</title>
<hr>
<applet code="HelloWorldApplet.class" width="320" height="120">
If your browser was Java-enabled, a "Hello, World"
message would appear here.
</applet>
<hr>
</html>

Note: You can refer to HTML Applet Tag to understand more about calling applet from HTML.

The code attribute of the <applet> tag is required. It specifies the Applet class to run. Width and height are also required to specify the initial size of the panel in which an applet runs. The applet directive must be closed with a </applet> tag.

If an applet takes parameters, values may be passed for the parameters by adding <param> tags between <applet> and </applet>. The browser ignores text and other tags between the applet tags.

Non-Java-enabled browsers do not process <applet> and </applet>. Therefore, anything that appears between the tags, not related to the applet, is visible in non-Java-enabled browsers.

The viewer or browser looks for the compiled Java code at the location of the document. To specify otherwise, use the codebase attribute of the <applet> tag as shown:

<applet codebase="http://amrood.com/applets"
code="HelloWorldApplet.class" width="320" height="120">

If an applet resides in a package other than the default, the holding package must be specified in the code attribute using the period character (.) to separate package/class components. For example:

<applet code="mypackage.subpackage.TestApplet.class" 
           width="320" height="120">

Getting Applet Parameters:

The following example demonstrates how to make an applet respond to setup parameters specified in the document. This applet displays a checkerboard pattern of black and a second color.

The second color and the size of each square may be specified as parameters to the applet within the document.

CheckerApplet gets its parameters in the init() method. It may also get its parameters in the paint() method. However, getting the values and saving the settings once at the start of the applet, instead of at every refresh, is convenient and efficient.

The applet viewer or browser calls the init() method of each applet it runs. The viewer calls init() once, immediately after loading the applet. (Applet.init() is implemented to do nothing.) Override the default implementation to insert custom initialization code.

The Applet.getParameter() method fetches a parameter given the parameter’s name (the value of a parameter is always a string). If the value is numeric or other non-character data, the string must be parsed.

The following is a skeleton of CheckerApplet.java:

import java.applet.*;
import java.awt.*;
public class CheckerApplet extends Applet
{
   int squareSize = 50;// initialized to default size
   public void init () {}
   private void parseSquareSize (String param) {}
   private Color parseColor (String param) {}
   public void paint (Graphics g) {}
}

Here are CheckerApplet’s init() and private parseSquareSize() methods:

public void init ()
{
   String squareSizeParam = getParameter ("squareSize");
   parseSquareSize (squareSizeParam);
   String colorParam = getParameter ("color");
   Color fg = parseColor (colorParam);
   setBackground (Color.black);
   setForeground (fg);
}
private void parseSquareSize (String param)
{
   if (param == null) return;
   try {
      squareSize = Integer.parseInt (param);
   }
   catch (Exception e) {
     // Let default value remain
   }
}

The applet calls parseSquareSize() to parse the squareSize parameter. parseSquareSize() calls the library method Integer.parseInt(), which parses a string and returns an integer. Integer.parseInt() throws an exception whenever its argument is invalid.

Therefore, parseSquareSize() catches exceptions, rather than allowing the applet to fail on bad input.

The applet calls parseColor() to parse the color parameter into a Color value. parseColor() does a series of string comparisons to match the parameter value to the name of a predefined color. You need to implement these methods to make this applet works.

Specifying Applet Parameters:

The following is an example of an HTML file with a CheckerApplet embedded in it. The HTML file specifies both parameters to the applet by means of the <param> tag.

<html>
<title>Checkerboard Applet</title>
<hr>
<applet code="CheckerApplet.class" width="480" height="320">
<param name="color" value="blue">
<param name="squaresize" value="30">
</applet>
<hr>
</html>

Note: Parameter names are not case sensitive.

Application Conversion to Applets:

It is easy to convert a graphical Java application (that is, an application that uses the AWT and that you can start with the java program launcher) into an applet that you can embed in a web page.

Here are the specific steps for converting an application to an applet.

  • Make an HTML page with the appropriate tag to load the applet code.
  • Supply a subclass of the JApplet class. Make this class public. Otherwise, the applet cannot be loaded.
  • Eliminate the main method in the application. Do not construct a frame window for the application. Your application will be displayed inside the browser.
  • Move any initialization code from the frame window constructor to the init method of the applet. You don’t need to explicitly construct the applet object.the browser instantiates it for you and calls the init method.
  • Remove the call to setSize; for applets, sizing is done with the width and height parameters in the HTML file.
  • Remove the call to setDefaultCloseOperation. An applet cannot be closed; it terminates when the browser exits.
  • If the application calls setTitle, eliminate the call to the method. Applets cannot have title bars. (You can, of course, title the web page itself, using the HTML title tag.)
  • Don’t call setVisible(true). The applet is displayed automatically.

Event Handling:

Applets inherit a group of event-handling methods from the Container class. The Container class defines several methods, such as processKeyEvent and processMouseEvent, for handling particular types of events, and then one catch-all method called processEvent.

In order to react an event, an applet must override the appropriate event-specific method.

import java.awt.event.MouseListener;
import java.awt.event.MouseEvent;
import java.applet.Applet;
import java.awt.Graphics;

public class ExampleEventHandling extends Applet 
			 implements MouseListener {

    StringBuffer strBuffer;

    public void init() {
	addMouseListener(this);
	strBuffer = new StringBuffer();
        addItem("initializing the apple ");
    }

    public void start() {
        addItem("starting the applet ");
    }

    public void stop() {
        addItem("stopping the applet ");
    }

    public void destroy() {
        addItem("unloading the applet");
    }

    void addItem(String word) {
        System.out.println(word);
        strBuffer.append(word);
        repaint();
    }

    public void paint(Graphics g) {
	//Draw a Rectangle around the applet's display area.
        g.drawRect(0, 0, 
		   getWidth() - 1,
		   getHeight() - 1);

	//display the string inside the rectangle.
        g.drawString(strBuffer.toString(), 10, 20);
    }

   
    public void mouseEntered(MouseEvent event) {
    }
    public void mouseExited(MouseEvent event) {
    }
    public void mousePressed(MouseEvent event) {
    }
    public void mouseReleased(MouseEvent event) {
    }

    public void mouseClicked(MouseEvent event) {
	addItem("mouse clicked! ");
    }
}

Now, let us call this applet as follows:

<html>
<title>Event Handling</title>
<hr>
<applet code="ExampleEventHandling.class" 
width="300" height="300">
</applet>
<hr>
</html>

Initially, the applet will display “initializing the applet. Starting the applet.” Then once you click inside the rectangle “mouse clicked” will be displayed as well.

Displaying Images:

An applet can display images of the format GIF, JPEG, BMP, and others. To display an image within the applet, you use the drawImage() method found in the java.awt.Graphics class.

Following is the example showing all the steps to show images:

import java.applet.*;
import java.awt.*;
import java.net.*;
public class ImageDemo extends Applet
{
  private Image image;
  private AppletContext context;
  public void init()
  {
      context = this.getAppletContext();
      String imageURL = this.getParameter("image");
      if(imageURL == null)
      {
         imageURL = "java.jpg";
      }
      try
      {
         URL url = new URL(this.getDocumentBase(), imageURL);
         image = context.getImage(url);
      }catch(MalformedURLException e)
      {
         e.printStackTrace();
         // Display in browser status bar
         context.showStatus("Could not load image!");
      }
   }
   public void paint(Graphics g)
   {
      context.showStatus("Displaying image");
      g.drawImage(image, 0, 0, 200, 84, null);
      g.drawString("www.javalicense.com", 35, 100);
   }  
}

Now, let us call this applet as follows:

<html>
<title>The ImageDemo applet</title>
<hr>
<applet code="ImageDemo.class" width="300" height="200">
<param name="image" value="java.jpg">
</applet>
<hr>
</html>

Playing Audio:

An applet can play an audio file represented by the AudioClip interface in the java.applet package. The AudioClip interface has three methods, including:

  • public void play(): Plays the audio clip one time, from the beginning.
  • public void loop(): Causes the audio clip to replay continually.
  • public void stop(): Stops playing the audio clip.

To obtain an AudioClip object, you must invoke the getAudioClip() method of the Applet class. The getAudioClip() method returns immediately, whether or not the URL resolves to an actual audio file. The audio file is not downloaded until an attempt is made to play the audio clip.

Following is the example showing all the steps to play an audio:

import java.applet.*;
import java.awt.*;
import java.net.*;
public class AudioDemo extends Applet
{
   private AudioClip clip;
   private AppletContext context;
   public void init()
   {
      context = this.getAppletContext();
      String audioURL = this.getParameter("audio");
      if(audioURL == null)
      {
         audioURL = "default.au";
      }
      try
      {
         URL url = new URL(this.getDocumentBase(), audioURL);
         clip = context.getAudioClip(url);
      }catch(MalformedURLException e)
      {
         e.printStackTrace();
         context.showStatus("Could not load audio file!");
      }
   }
   public void start()
   {
      if(clip != null)
      {
         clip.loop();
      }
   }
   public void stop()
   {
      if(clip != null)
      {
         clip.stop();
      }
   }
}

Now, let us call this applet as follows:

<html>
<title>The ImageDemo applet</title>
<hr>
<applet code="ImageDemo.class" width="0" height="0">
<param name="audio" value="test.wav">
</applet>
<hr>
</html>

You can use your test.wav at your PC to test the above example.

Java Documentation Comments

The Java language supports three types of comments:

Comment Description
/* text */ The compiler ignores everything from /* to */.
// text The compiler ignores everything from // to the end of the line.
/** documentation */ This is a documentation comment and in general its called doc comment. The JDK javadoc tool uses doc comments when preparing automatically generated documentation.

This tutorial is all about explaining Javadoc. We will see how we can make use of Javadoc for generating useful documentation for our Java code.

What is Javadoc?

Javadoc is a tool which comes with JDK and it is used for generating Java code documentation in HTML format from Java source code which has required documentation in a predefined format.

Following is a simple example where red part of the code represents Java comments:

/**
* The HelloWorld program implements an application that
* simply displays "Hello World!" to the standard output.
*
* @author  Zara Ali
* @version 1.0
* @since   2014-03-31 
*/
public class HelloWorld {
    public static void main(String[] args) {
        /* Prints Hello, World! on standard output.
        System.out.println("Hello World!");
    }
}

You can include required HTML tags inside the description part, For example, below example makes use of <h1>….</h1> for heading and <p> has been used for creating paragraph break:

/**
* <h1>Hello, World!</h1>
* The HelloWorld program implements an application that
* simply displays "Hello World!" to the standard output.
* <p>
* Giving proper comments in your program makes it more
* user friendly and it is assumed as a high quality code.
* 
*
* @author  Zara Ali
* @version 1.0
* @since   2014-03-31 
*/
public class HelloWorld {
    public static void main(String[] args) {
        /* Prints Hello, World! on standard output.
        System.out.println("Hello World!");
    }
}

The javadoc Tags:

The javadoc tool recognizes the following tags:

Tag Description Syntax
@author Adds the author of a class. @author name-text
{@code} Displays text in code font without interpreting the text as HTML markup or nested javadoc tags. {@code text}
{@docRoot} Represents the relative path to the generated document’s root directory from any generated page {@docRoot}
@deprecated Adds a comment indicating that this API should no longer be used. @deprecated deprecated-text
@exception Adds a Throws subheading to the generated documentation, with the class-name and description text. @exception class-name description
{@inheritDoc} Inherits a comment from the nearestinheritable class or implementable interface Inherits a comment from the immediate surperclass.
{@link} Inserts an in-line link with visible text label that points to the documentation for the specified package, class or member name of a referenced class. T {@link package.class#member label}
{@linkplain} Identical to {@link}, except the link’s label is displayed in plain text than code font. {@linkplain package.class#member label}
@param Adds a parameter with the specified parameter-name followed by the specified description to the “Parameters” section. @param parameter-name description
@return Adds a “Returns” section with the description text. @return description
@see Adds a “See Also” heading with a link or text entry that points to reference. @see reference
@serial Used in the doc comment for a default serializable field. @serial field-description | include | exclude
@serialData Documents the data written by the writeObject( ) or writeExternal( ) methods @serialData data-description
@serialField Documents an ObjectStreamField component. @serialField field-name field-type field-description
@since Adds a “Since” heading with the specified since-text to the generated documentation. @since release
@throws The @throws and @exception tags are synonyms. @throws class-name description
{@value} When {@value} is used in the doc comment of a static field, it displays the value of that constant: {@value package.class#field}
@version Adds a “Version” subheading with the specified version-text to the generated docs when the -version option is used. @version version-text

Example:

Following program uses few of the important tags available for documentation comments. You can make use of other tags based on your requirements.

The documentation about the AddNum class will be produced in HTML file AddNum.html but same time a master file with a name index.html will also be created.

import java.io.*;

/**
* <h1>Add Two Numbers!</h1>
* The AddNum program implements an application that
* simply adds two given integer numbers and Prints
* the output on the screen.
* <p>
* <b>Note:</b> Giving proper comments in your program makes it more
* user friendly and it is assumed as a high quality code.
*
* @author  Zara Ali
* @version 1.0
* @since   2014-03-31
*/
public class AddNum {
   /**
   * This method is used to add two integers. This is
   * a the simplest form of a class method, just to
   * show the usage of various javadoc Tags.
   * @param numA This is the first paramter to addNum method
   * @param numB  This is the second parameter to addNum method
   * @return int This returns sum of numA and numB.
   */
   public int addNum(int numA, int numB) {
      return numA + numB;
   }

   /**
   * This is the main method which makes use of addNum method.
   * @param args Unused.
   * @return Nothing.
   * @exception IOException On input error.
   * @see IOException
   */
   public static void main(String args[]) throws IOException
   {

      AddNum obj = new AddNum();
      int sum = obj.addNum(10, 20);

      System.out.println("Sum of 10 and 20 is :" + sum);
   }
}

Now, process above AddNum.java file using javadoc utility as follows:

$ javadoc AddNum.java
Loading source file AddNum.java...
Constructing Javadoc information...
Standard Doclet version 1.7.0_51
Building tree for all the packages and classes...
Generating /AddNum.html...
AddNum.java:36: warning - @return tag cannot be used in method with void return type.
Generating /package-frame.html...
Generating /package-summary.html...
Generating /package-tree.html...
Generating /constant-values.html...
Building index for all the packages and classes...
Generating /overview-tree.html...
Generating /index-all.html...
Generating /deprecated-list.html...
Building index for all classes...
Generating /allclasses-frame.html...
Generating /allclasses-noframe.html...
Generating /index.html...
Generating /help-doc.html...
1 warning
$

You can check all the generated documentation here: AddNum. If you are using JDK 1.7 then javadoc does not generate a great stylesheet.css, so I suggest to download and use standard stylesheet from http://docs.oracle.com/javase/7/docs/api/stylesheet.css